Synthesis and Structural Elucidation of 1, 4 Dihydropyrimido [1, 2-a] Benzimidazole

Kaushik Joshi a*, Vikas Chauhan b, Hardik Bhatt c and Nikunj Dave c

a Department of Chemistry, D K V Arts and Science College, Jamnagar-361008 Gujarat, India.
b JJT University, Rajasthan, India.
c OM College of Science and PG Center, Junagadh-362310 Gujarat, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOCS/2022/v11i19112

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/81384

Received 02 November 2021
Accepted 04 January 2022
Published 05 January 2022

ABSTRACT

Considering various biomedical significance & with a view of pharmacological actions of compound belong to this class, new series of N-(substituted phenyl)-2-methyl-4-[(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-yl)phenyl]-1-4-dihydro pyrimido [1, 2-a] benzimidazole-3-carboxamide were prepared. The formation of the compound was accomplished by cyclocondensation of 2-(1, 2-dihydro-2-oxo-1-phenyl-5-(pyridin-2-yl)pyridin-3-yl) benzaldehyde and N-(substituted phenyl)-3-oxobutanamide, 2-amino-benzimidazole under acid catalyzed conditions. The structures of pyrimidobenzimidazoles were determined by MASS, IR, 1H NMR spectroscopic techniques & Elemental analysis technique.

*Corresponding author: E-mail: joshi_kaushik9@yahoo.com;
Keywords: Pyrimidobenzimidazoles; carboxamide; biomedical; biginelli; dimethylformamide.

1. INTRODUCTION

Heterocyclic compounds are important class of molecules in organic chemistry. They have been developed since many decades through chemists due to their significant role in medicinal chemistry and make available as a type pattern for the growth of a hodgepodge of therapeutic agents [1-3]. Nitrogen containing heterocycles are widely used amongst all heterocyclic moieties whether it is five or six member ring. Most biologically-active chemical entities contain a heterocycle. It means that heterocycles have vital role to impart in the drug designing section. Heterocycles can be applied to modify various properties of biologically active compounds like polarity, solubility, toxicity etc in the drug development phase. The large variety of heterocyclic compounds is available due to advance synthetic methodologies developed by many scientists. Heterocycles can also be isolated from natural sources and it can be modify as per the requirements. Medicinal chemists play significant role here to identify the lead compound from natural sources and modify their structures to impart some characteristics or decreases the toxic effects during drug discovery process.

Multicomponent reaction a way out because they are good organized cost resourceful and less profligate than straight process. The products of temperature quick to respond reactions from kinetic path can be selectively inaccessible. As multicomponent coupling often complex compound in a single step, they are extensively studied in the era of modern organic chemistry [4]. Poly substituted pyrimido [1, 2-a] benzimidazoles display a wide array of medicinal activities. They bear structural resemblance to purine bases.

Pyrimidines have extensive and famed times gone by extending from the days of their judgment as significant part of nucleic acids to their present use in the AIDS chemotherapy. Uracil, thymine and cytosine are the three important constituents of nucleic acids. Alloxan produces diabetes inducing reaction [7].

Pyrimidine class of compound are widely researched & employed as antibacterial agents [8]. Heterocycles bearing a benzimidazole moiety were reported to demonstrate a wide array of Medicinal properties like antimicrobial, anticonvulsant, anticancer, anti-inflammatory, analgesic, antidepressant, bioactivities, Antimicrobial, antimalerial, anticonvulsant, anticancer, anti-inflammatory, analgesic and antitubercular [9-17]. Some other experiments work done in our laboratory [16-20].

Fig. 1. Structure of pyrimido [1, 2-a] benzimidazole

It serves as a trail to produce molecular environmental that combats the normally expensive and time-consuming drug detection process whereby a small number of novel therapeutics arrive at the market place. The added investigational benefits of generating multifaceted structures from easy raw materials without complex procedures, long-lasting purification procedures get betters the synthetic approach for future youthful researchers wishing to donate products to a more systematically inventive civilization [5,6].

Fig. 2. Structure of pyrimido base compounds
2. METHODOLOGY

An open capillary tubes method and uncorrected melting point were reported. Pattern of the compound was on the whole tartan by TLC on silica gel plates (0.51 mm) thickness and stain were situated by I₂ and Ultra Violet. Infrared spectra were documentation in Shimadzu instrument FTIR-8400 using KBr pellet method. Mass spectra were records on Shimadzu GC-MS-QP-2010 mold using express Injection probe method and Turbo spray model using chemical isolation technique. ¹H NMR was dogged in CDCl₃/dimethyl sulfoxide solution on a Bruker Ac 400 MHz spectrometer.

Common Methods for the preparation of N-(substitutedphenyl)-1,6-dihydro-[2,3'-bipyridin]-2-Methyl-4-(2-(6-oxo-1-phenyl-5'-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-501 to 510)

A combination of the 2-amino benzimidazole (0.01 M) N-(substitutedaryl)-3-oxo-4-methyl pentanamides (0.02 M) and 2-(1,2-dihydro-2-oxo-1-phenyl-5-(pyridin-2-y1) pyridin-3-yl) benzaldehyde (0.01 M) was heated to reflux in methanol (~25 mL) was supplementary. The reaction mass was attaining the room temperature methanol (~25 mL) was Supplementary. The reaction mass was kept for 12-14 hours and then filtered to give the 1,4-dihydro pyrimido[1,2-a]benzimidazoles (VK-501 to 510), which were crystallization from alcohol.

N-(Phenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2,3-bipyridin]-5-yl)phenyl)-1,4-dihydropyrimido[1,2-a] benzimidazole-3-carboxamide (VK-501)

Yield: 65.3%; MP 170°C; Mass: m/z 627.

IR (cm⁻¹): 3424 (OH-H secondary amide), 3094 (C-H of aromatic ring), 2944 (C-H of aromatic ring), 1682 (C=O of amide), 1594 (N-H of pyrimidine ring), 1525 (C=C of aromatic ring), 1454 (C-H of aromatic ring), 1345 (C-H of aromatic ring), 1265 (C=C of aromatic ring), 1263 (C-H of aromatic ring), 2849 (C-H secondary amide), 2850 (C-H of aromatic ring), 1652 (C=O of amide), 1608 (C-H secondary amide), 1566 (C-H of aromatic ring), 1496 (C-H of aromatic ring), 1365 (C-H of aromatic ring), 1266 (C-H in plane of aromatic ring), 965 (C-Cl stretch).

1H NMR (Dimethyl sulfoxide-d6) δ ppm: 1.48 (s 3H, Ha), 5.26 (s 1H, Hb), 6.86-6.88 (m 2H, Hcd), 6.98-7.00 (dd 2H, Hff), 7.05-7.07 (dd 2H, Hff), 7.12-7.15 (m 4H, Hg-j), 7.28-7.29 (dd 2H, Hkk), 7.47-7.49 (dd 2H, Hll), 7.68-7.69 (l 4H, Hmp), 7.83-7.84 (dd 2H, Hqq'), 8.45-8.48 (m 3H, Hr-t); 8.70 (s 1H, Hu), 8.88-9.2 (s 1H, Hv).

N-(4-Chlorophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2,3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-502).

Yield: 57%; mp 187°C; MS: m/z 661.

IR (cm⁻¹): 3252 (OH-H secondary amide), 3075 (C-H of aromatic ring), 2952 (C-H of aromatic ring), 2824 (C=O of aromatic ring), 1652 (C=O of amide), 1602 (C-H of aromatic ring), 1496 (C-H of aromatic ring), 1365 (C-H of aromatic ring), 1266 (C-H in plane of aromatic ring), 965 (C-Cl stretch).

1H NMR (Dimethyl sulfoxide-d6) δ ppm: 1.50 (s 3H, Ha), 5.36 (s 1H, Hb), 6.82-6.87 (m 2H, Hcd), 7.0-7.3 (dd 2H, Hee), 7.07-7.1 (dd 2H, Hff), 7.11-7.18 (m 4H, Hg-j), 7.26-7.30 (dd 2H, Hkk), 7.41-7.42 (dd 2H, Hll), 7.66-7.69 (l 4H, Hmp), 7.81-7.84 (dd 2H, Hqq'), 8.46-8.49 (m 3H, Hr-t); 8.72 (s 1H, Hu), 8.81 (s 1H, Hv).

N-(3-Chlorophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2,3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide(VK-503).

Yield: 63%; mp 188°C; MS: m/z 661.

IR (cm⁻¹): 3360 (OH-H secondary amide), 3082 (C-H of aromatic ring), 2957 (C-H of aromatic ring), 2850 (C-H of aromatic ring), 1670 (C=O of amide), 1608 (C-H of pyrimidine ring), 1561 (C=O of aromatic ring), 1450 (C-H of aromatic ring), 1394 (C-H of aromatic ring), 1263 (C-H in plane of aromatic ring), 690 (OH-Ciostretch).

1H NMR (Dimethyl sulfoxide-d6) δ ppm: 1.49 (s 3H, Ha), 5.32 (s 1H, Hb), 6.84-6.87 (m 2H, Hcd), 7.2-7.3 (dd 2H, Hee), 7.09-7.1 (dd 2H, Hff), 7.13-7.19 (m 4H, Hg-j), 7.27-7.31 (dd 2H, Hkk), 7.44-7.45 (dd 2H, Hll), 7.67-7.70 (l 4H, Hmp), 7.82-7.85 (dd 2H, Hqq'), 8.45-8.49 (m 3H, Hr-t); 8.75 (s 1H, Hu), 8.80 (s 1H, Hv).

N-(4-Bromophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2,3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide(VK-504).

Yield: 58%; mp 182°C; MS: m/z 706.

IR (cm⁻¹): 3217 (OH-H secondary amide), 3082 (C-H of aromatic ring), 2950 (C-H of aromatic ring).
group), 2848 (υC-H asym of CH₃ group), 1645 (υC=O of amide), 1593 (υN-H of of pyrimidine ring), 1548 (υC=C of aromatic ring), 1506 (υC-H asym of CH₃ group), 1323 (υC-H asym of CH₃ group), 1244 (υC-H in plane of aromatic ring), 690 (υC-Br stretch).

1H NMR (Dimethyl sulfoxide-d6) δ ppm: 1.52 (s 3H, Ha), 5.39 (s 1H, Hb), 6.87-6.89 (m 2H, Hed), 7.3-7.5 (dd’ 2H, Hee), 7.1-7.2 (dd’ 2H, Hff’), 7.12-7.19 (m 4H, Hg-j), 7.26-7.30 (dd’ 2H, Hkk), 7.43-7.45 (dd’ 2H, Hll’), 7.65-7.70 (t 4H, Hmp-p), 7.84-7.88 (dd’ 2H, Hqq’), 8.47-8.51 (m 3H, Hr-t); 8.75 (s 1H, Hu), 8.86 (s 1H, Hv).

N-(3-Bromophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-505).

Yield: 55%; MP 178°C; MS: m/z 706.

IR (cm⁻¹) : 3446 (υN-H secondary amide), 3096 (υC-H of aromatic ring), 2948 (υC-H asym of CH₃ group), 2850 (υC-H asym of CH₃ group), 1705 (υC=O of amide), 1633 (υN-H of pyrimidine ring), 1528 & 1440 (υC=C of aromatic ring), 1386 (δC-H asym of CH₃ group), 1300 (υC-H asym of CH₃ group), 1256 (υC-N), 775 (υC-H in plane of aromatic ring), 695 (υC-Br stretch).

1H NMR (Dimethyl sulfoxide-d6) δ ppm: 1.51 (s 3H, Ha), 5.38 (s 1H, Hb), 6.87-6.88 (m 2H, Hed), 7.1-7.3 (dd’ 2H, Hee), 7.09-7.1 (dd’ 2H, Hff’), 7.13-7.19 (m 4H, Hg-j), 7.29-7.31 (dd’ 2H, Hkk), 7.46-7.47 (dd’ 2H, Hll’), 7.67-7.69 (t 4H, Hmp-p), 7.83-8.78 (dd’ 2H, Hqq’), 8.46-8.49 (m 3H, Hr-t); 8.75 (s 1H, Hu), 8.84 (s 1H, Hv).

N-(4-Fluorophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-506).

Yield: 62.82%; MP 189°C; MS: m/z 645.

IR (cm⁻¹) : 3392 (υN-H secondary amide), 3059 (υC-H of aromatic ring), 2926 (υC-H asym of CH₃ group), 2847 (υC-H asym of CH₃ group), 1647 (υC=O of amide), 1591 (υN-H of pyrimidine ring), 1548 & 1508 (υC=C of aromatic ring), 1406 (δ C-H asym of CH₃ group), 1340 (υC-H asym of CH₃ group), 1271 (υC-N), 1026 (υC-Fstretch), 730 (υC-H in plane of aromatic ring).

N-(3-Fluorophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-507).

Yield: 66%; MP 187°C; MS: m/z 645.

IR (cm⁻¹) : 3300 (υN-H secondary amide), 3001 (υC-H of aromaticring), 2933 (υC-H asym of CH₃ group), 2850 (υC-H asym of CH₃ group), 1687 (υC=O of amide), 1526 (υN-H of pyrimidine ring), 1533 & 1465 (υC=C of aromaticring), 1344 (δ C-H asym of CH₃ group), 1292 (υC-H asym of CH₃ group), 1197 (υC-N), 1010 (υC-Fstretch), 748 (υC-H in plane of aromatic ring).

IR (cm⁻¹) : 3116 (υN-H secondary amide), 3000 (υC-H of aromatic ring), 2942 (υC-H asym of CH₃ group), 2856 (υC-H asym of CH₃ group), 1627 (υC=O of amide), 1528 (υN-H of pyrimidine ring), 1454 & 1442 (υC=C of aromatic ring), 1365 (υC-H asym of CH₃ group), 1299 (υC-H asym of CH₃ group), 1238 (υC-N), 774 (υC-H in plane of aromatic ring).

N-(4-Methoxyphenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-509).

Yield: 61%; mp 184°C; MS: m/z 657.

IR (cm⁻¹) : 3114 (υN-H secondary amide), 3009 (υC-H of aromatic ring), 2956 (υC-H asym of CH₃ group), 2894 (υC-H asym of CH₃ group), 1657 (υC=O of amide), 1576 (υN-H of pyrimidine ring), 1518, 1502 & 1460 (υC=C of aromatic ring), 1345 (υC-H asym of CH₃ group), 1324 (υC-H asym of CH₃ group), 1257 (υC-N), 731 (υC-H in plane of aromatic ring).

N-(4-Nitrophenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-yl)phenyl)-1,4-dihydro pyrimido[1,2-a] benzimidazole-3-carboxamide (VK-510).

Yield: 71%; mp 181°C; MS: m/z 672.

IR (cm⁻¹) : 3390 (υN-H secondary amide), 3028 (υC-H of aromatic ring), 2936 (υC-H asym of...
CH\(_3\) group), 2853 (\(\nu\text{C-H asym of CH}_3\) group), 1687 (\(\nu\text{C=O of amide}\)), 1611 (\(\nu\text{N-H of pyrimidine ring}\)), 1532, & 1446 (\(\nu\text{C=C of aromatic ring}\)), 1364 (\(\nu\text{C=C of Aromatic ring}\)), 1333 (\(\nu\text{C-H sym of CH}_3\) group), 1275 (\(\nu\text{C-N}\)), 1275 (\(\nu\text{C-N}\)), 750 (\(\nu\text{C-H in plane of Aromatic ring}\))

3. RESULTS AND DISCUSSION

The bioactivity potential of 1, 4-dihydropyrimido [1, 2-\(a\)] benzimidazoles is widely reported. Further, diversely substituted derivatives of this class of compound have depicted impressive medicinal profile.

Man-made ways to 1, 4-dihydropyrimido [1, 2-\(a\)] benzimidazoles is pedestal on the Biginelli like cyclo combination of new -CHO and N-(substituted phenyl)-3-oxobutanamide with 2-amino benzimidazole.

Noting a range of claim biomedical and with a view further to deem the Medicinal profile of this set of compound, narrative series of N-(substituted phenyl)-2-methyl-4-(2-(6-oxo-1-phenyl-1-6-dihydro-[2-3-bipyridin]-5-ylphenyl)-1-4-dihydropyrimido[1,2-\(a\)] benzimidazole-3-carboxamide (VK-501 to VK-510) were manufactured. The manufacture of (VK-501 to VK-510) were achieved by reaction of N-(substituted phenyl)-3-oxobutanamide, 2-aminobenzimidazole and 2-(1,2-dihydro-2-oxo-1-phenyl-5-(pyridin-2-yl)pyridin-3-y1)benzaldehyd in the presence of HCl.

![Scheme 1. Reaction scheme of pyrimidine derivatives](image)

Table 1. Physical data

<table>
<thead>
<tr>
<th>Code</th>
<th>(\text{R})</th>
<th>Molecular formula</th>
<th>Molecular Weight</th>
<th>Melting Point (\text{°C})</th>
<th>(R_t)</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>VK-501</td>
<td>H</td>
<td>C({40})H({29})N(_7)O(_4)</td>
<td>627</td>
<td>170</td>
<td>0.43</td>
<td>64</td>
</tr>
<tr>
<td>VK-502</td>
<td>4-Cl</td>
<td>C({40})H({29})ClN(_7)O(_2)</td>
<td>661</td>
<td>187</td>
<td>0.44</td>
<td>57</td>
</tr>
<tr>
<td>VK-503</td>
<td>3-Cl</td>
<td>C({40})H({29})ClN(_7)O(_2)</td>
<td>661</td>
<td>188</td>
<td>0.50</td>
<td>63</td>
</tr>
<tr>
<td>VK-504</td>
<td>4-Br</td>
<td>C({40})H({29})BrN(_7)O(_2)</td>
<td>706</td>
<td>182</td>
<td>0.49</td>
<td>58</td>
</tr>
<tr>
<td>VK-505</td>
<td>3-Br</td>
<td>C({40})H({29})BrN(_7)O(_2)</td>
<td>706</td>
<td>178</td>
<td>0.43</td>
<td>55</td>
</tr>
<tr>
<td>VK-506</td>
<td>4-F</td>
<td>C({40})H({29})FN(_7)O(_2)</td>
<td>645</td>
<td>189</td>
<td>0.44</td>
<td>62</td>
</tr>
<tr>
<td>VK-507</td>
<td>3-F</td>
<td>C({40})H({29})FN(_7)O(_2)</td>
<td>645</td>
<td>187</td>
<td>0.46</td>
<td>66</td>
</tr>
<tr>
<td>VK-508</td>
<td>4-Me</td>
<td>C({41})H({32})N(_2)O(_2)</td>
<td>641</td>
<td>183</td>
<td>0.40</td>
<td>63</td>
</tr>
<tr>
<td>VK-509</td>
<td>4-Ome</td>
<td>C({41})H({32})N(_2)O(_3)</td>
<td>657</td>
<td>184</td>
<td>0.50</td>
<td>61</td>
</tr>
<tr>
<td>VK-510</td>
<td>4-NO(_2)</td>
<td>C({40})H({29})N(_7)O(_4)</td>
<td>672</td>
<td>181</td>
<td>0.47</td>
<td>71</td>
</tr>
</tbody>
</table>
3.1 Plausible Reaction Mechanism

4. CONCLUSION

In conclusion, Our study commenced with different types of N-(substituted phenyl)-3-oxobutanamide, 2-aminobenzimidazole, two new special kind of aldehyde as 4-(4-(trifluoromethyl)-2-nitrophenoxy)-2-hydroxybenzaldehyde and 2-(1,2-dihydro-2-oxo-1-phenyl-5-(pyridin-2-yl)pyridin-3-yl)benzaldehyde in presence of DMF (N,N'-Dimethyl formamide) as solvent. The reaction proceeds with fast rate and yields good to high percentage of product. Structure ware elucidated by IR, mass and NMR.

ACKNOWLEDGEMENT

Author is thankful to Department of Chemistry, D. K. V. Arts and Science College, Jamnagar, India for providing laboratory facilities. None of the author working under any project.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

6. Chauhan V, Joshi KA, Ram HK. Synthesis of Novel schiff base of 3-(2, 4-Disulfamoylaniline) morpholine derivatives.

© 2022 Joshi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.